
CS161 Handout 09

Summer 2013 July 22, 2013

Problem Set 4

This problem set is all about randomness – randomized algorithms, randomized data structures, 
random variables, etc.  By the time you're done with this problem set, we hope that you have a 
much more nuanced understanding of randomization and its role in algorithm design.

Please be sure to write your answers different problems on separate pieces of paper to make 
it easier for us to grade.  Also, please put your name on each page of your assignment.

As always, please feel free to drop by office hours or send us emails if you have any questions. 
We'd be happy to help out.

This problem set has 36 possible points.  It is weighted at 12% of your total grade.

Good luck, and have fun!

Due Monday, July 29 at 2:15 PM
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Problem One: Insertion Sort Revisited (4 Points)
In our very first lecture, we saw that the runtime of insertion sort on an input array of length n was 
Θ(n + I), where I is the number of inversions in the array (recall that an inversion is a pair of ele-
ments A[i] and A[j] where A[i] > A[j] but i < j).  At the end of lecture, we sketched out a proof that 
if insertion sort is run over a uniformly-random permutation of 1, 2, …, n, its expected runtime is 
Θ(n2) because E[I] = Θ(n2).

Formally prove that E[I] = Θ(n2) by writing I as the sum of appropriate indicator random variables 
and using linearity of expectation.

Problem Two: Weighted Min-Cut (8 Points)
This problem explores the weighted min cut problem.  In this variation of the min cut problem, all 
edges in the graph are assigned a nonnegative weight we.  The goal is to find a cut in the graph that 
minimizes the total weight of all edges crossing that cut.

Although it may seem like this problem is harder than finding a min cut, it turns out that Karger's 
algorithm (and the Karger-Stein algorithm) can easily be adjusted to solve the weighted min cut 
problem.  In fact, these algorithms were originally designed to find weighted min cuts; the un-
weighted versions we discussed in lecture are just a special case where all weights are 1.

Here is the only modification necessary to Karger's algorithm to handle weighted graphs: when 
choosing an edge to contract, instead of choosing the edge uniformly at random, choose each edge 
e with probability 

we

∑
f ∈E

w f

That is, the probability that we choose e is the fraction of the total weight associated with edge e.

As in our analysis of the unweighted version of Karger's algorithm, consider any min-weight cut 
C with total weight k.  Let  be the event that the weighted version of Karger's algorithm neverƐ  
contracts an edge from C, and let the event Ɛi be the event that it does not contract any edge from 
C during iteration i.  As before, we have that

P( ) = Ɛ P(Ɛn-2 | Ɛn-3, Ɛn-4, …, Ɛ2, Ɛ1) P(Ɛn-3 | Ɛn-4, …, Ɛ1) … P(Ɛ2 | Ɛ1) P(Ɛ1)

Your job is to determine this probability.

i. Prove that P( ) ≥ (Ɛ₁ n – 2) / n.

ii. Prove that P(Ɛi | Ɛi-1, Ɛi-2, …, Ɛ2, Ɛ1) ≥ (n – i – 1) / (n – i + 1)

Because of your results from (i) and (ii), we can use the same analysis of Karger's algorithm to 
conclude that P( ) = 2 / Ɛ n(n – 1), meaning that the weighted version of Karger's algorithm has the 
exact same success probability as the unweighted version.  Since the probabilities work out the 
same way, this also means that the Karger-Stein algorithm can also find weighted min cuts with 
probability Ω(1 / log n).

In other words, it's not much harder to find a weighted min cut than an unweighted min cut!
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Problem Three: Set Partitioning (8 Points)
The set partitioning problem is an NP-hard problem.  Given a set S of real numbers, the goal is to 
split S into two subsets T and S – T such that the quantity

∑
x∈T

x− ∑
x∈S−T

x

is as close to 0 as possible.  We'll call the above quantity the cost of a partition.

i. Design a polynomial-time, randomized algorithm that  returns a partition with expected 
cost 0.  Then:

• Describe your algorithm.

• Prove your algorithm returns a partition that, on expectation, has cost 0.

• Prove that your algorithm runs in polynomial time.

ii. Give an example of a set S has no partition of cost 0.  Briefly explain how this is possible, 
given that you just designed an algorithm that returns a partition with expected cost 0.

Problem Four: The Count-Min Sketch (15 Points)
A streaming algorithm is a type of algorithm where the input to the algorithm is fed in one ele-
ment at a time.  As the algorithm is running, it can periodically be queried to learn properties of 
the data that have been received so far.  At a high level, a streaming algorithm works as follows:

• The algorithm waits for data to arrive or queries about that data to be made.

• When data arrives, the algorithm performs work to process that data.

• When queries about the data are made, the algorithm performs work to answer that query.

One important operation on data streams is to report how many times a particular piece of data has 
appeared in the stream (this is called frequency estimation.) For example, Google gets billions of 
searches each day and periodically might want to know how many times a particular search has 
been made.  One possible algorithm for this would be to store a hash table associating each search 
with its frequency.  This is simple but space-inefficient; if there are n distinct searches (which, for 
Google, would be a very large number), this requires Ω(n) storage space.

The Count-Min sketch (or CM sketch) is a frequency estimation algorithm that uses o(n) storage 
space.  To save space, the CM sketch only gives probabilistic guarantees on the accuracy of its es-
timates: with high probability, the CM sketch will return a frequency estimate close to the true fre-
quency.  As you'll see, the CM sketch is simple, fast, space-efficient, and accurate.  It's also fairly 
recent (developed in 2003) and uses universal hash functions in a clever way.

This problem is broken down into six parts:

• Part (i) asks you to trace through a simplified version of the algorithm.

• Parts (ii),  (iii),  (iv), and (v) ask you to determine  quality of the estimates produced by a 
simplified version of the CM sketch.

• Part (vi) asks you to analyze the quality of the estimates given by the full CM sketch.

Note: If you get stuck proving any of the results, feel free to assume the result is true while work-
ing on the later parts of the problem.  The problem starts on the next page.
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Suppose that you have a data stream composed of elements drawn from the universe U = {x , ₁ x ,₂  
…, xₙ}.  Your goal is to be able to estimate, at any point in time, how many times some element 
xk has appeared in the data stream so far.  To do this, you create an array A of  some length  w, 
where each entry is an integer initialized to 0. (We'll assume the array is zero-indexed).  You have 
available a universal family of hash functions ℋ that hash from U to the set {0, 1, 2, …, w – 1}. 
At the time you create array A, you select, uniformly at random, a hash function h  ∈ℋ.

On receiving data x, you compute h(x) and increment the counter at that location.  In pseudocode:

procedure onReceive(x):
    let bucket = h(x)
    A[bucket] = A[bucket] + 1

i. Suppose that w = 5 and queries are integers.  If the hash function is h(x) = x mod w, what 
will the array values be after you receive these numbers from the data stream?

    2, 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, 9, 0, 4, 5

Given this data structure, you can estimate the number of times that you've seen the value  x by 
computing h(x) and returning the value of the counter at that array location.  In pseudocode:

procedure estimateFrequency(x):
    let bucket = h(x)
    return A[bucket]

This is not guaranteed to produce an accurate result.  As you can see from your array from part (i), 
if you estimate the frequency of 1 or 8, you will get the right answer.  However, estimating the fre-
quency of 0, 2, 4, 5, 7, or 9 will produce the wrong answer.  This happens because different values 
can hash to the same position, so each counter might count the frequencies of several elements.

However, because h is drawn from a family of universal hash functions, the value produced as the 
estimate for fi will, with reasonable probability, be close to the true value.  Suppose that at some 
point in time the values x , ₁ x , …, ₂ xₙ have appeared with frequencies f , ₁ f , …, ₂ fₙ.  Note that the f 
variables are not random variables; they're the true frequencies of the data.  For any pair of distinct 
xi, xj, define Cij to be the indicator random variable

C ij={1 if h(x i)=h( x j)

0 otherwise

In other words, Cij is 1 if xi and xj hash to the same slot in the array and is 0 otherwise.

ii. For any xi, define Vi to be a random variable equal to the estimated frequency of the ele-
ment xi.  That is, Vi = A[h(xi)].  Express Vi in terms of the x, f, and C variables.

iii. Prove that Vi ≥ fi.  That is, the algorithm never underestimates the frequency of xi.

Let N be the total number of data points received in the stream so far.

N=∑
i=1

n

f i

iv. Show that E[Vi] ≤ fi + N / w.  In other words, the expected value of the estimated frequency 
of xi is at most fi (the true frequency of xi) plus the total number of data points received di-
vided by the size of the array.  (Hint: Use the fact that h is drawn from a universal family  
of hash functions.)

(Continued on the next page)   
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Your result from (iv) shows that we can adjust the quality of frequency estimates by changing the 
size of the array. As w gets larger, the expected value gets closer to fi, the true frequency.

Next, you'll show that the probability of getting a very “noisy” answer is at most a constant:

v. Prove that P(Vi ≥ fi + eN / w) ≤ 1 / e, where e is the base of the natural logarithm.  (Hint:  
Use Markov's inequality. You might find it easier to work with a new variable V'i = Vi – fi.)

The full  CM sketch is formed by having multiple copies of the above data structure running in 
parallel.  Suppose that instead of creating just one array of length w, we create d different arrays 
A , ₁ A , … ₂ Ad, each of length w.  We associate with each array Aₖ a hash function hₖ ∈ ℋ chosen 
uniformly at random.  Whenever a new data point x is received, we go to each array Aₖ, compute 
hₖ(x), then increment the counter at that position in Aₖ.  In pseudocode:

procedure onReceive(x):
    for k = 1 to d:
        let bucket = hk(x)
        Ak[bucket] = Ak[bucket] + 1

Because we have multiple arrays, we will get back multiple different estimates for the frequency 
of an element xi.  To resolve this, we can just get the estimates from each of the arrays, then take 
the minimum.  Intuitively, this picks the estimate with the lowest “noise.”  In pseudocode:

procedure estimateFrequency(x):
    let best = ∞
    for k = 1 to d:
        let bucket = hk(x)
        best = min(best, Ak[bucket])
    return best

For any element xi and any array Ak, define Vik to be the estimate of the frequency of xi from array 
Ak.  The final estimate Ui of the frequency of xi is then given by

Ui = min{ Vi1, Vi2, …, Vid }

vi. Prove that P(Ui ≥ fi + eN / w) ≤ (1 / e)d.  (Hint: Under what circumstances will the mini-
mum of Vi1, Vi2, …, Vid be greater than fi + eN / w?)

Let's suppose that we pick two parameters ε and δ, both of which are in the range (0, 1).  We'll  
then choose w = ⌈e / ε  and ⌉ d = ln (1 / δ) .  Since you proved⌈ ⌉

 P(Ui ≥ fi + eN / w) ≤ (1 / e)d

This means that

P(Ui ≥ fi + εN) ≤ δ

You can think of ε as an “accuracy” parameter and δ as a “confidence” parameter.  By lowering ε, 
we increase precision; by lowering δ, we increase the chance our answer is correct.

The CM sketch has excellent performance.  Upon receiving new data,  the CM sketch does only 
Θ(ln (1 / δ)) work computing ln (1 / δ)⌈ ⌉ hash functions and incrementing ln (1 / δ)⌈ ⌉ counters. 
Performing a query similarly takes time Θ(ln (1 / δ)).  Moreover, the CM sketch does so without 
using much space; it stores ln (1 / δ)⌈ ⌉ arrays of size ⌈e / ε⌉, so its space usage is Θ(ε-1 ln (1 / δ)). 
This allows the performance to be tuned to optimize for precision, confidence, or space.
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Problem Five: Course Feedback (1 Point)
We want this course to be as good as it can be, and we'd appreciate your feedback on how we're  
doing.  For a free point, please answer the following questions.  We'll give you full credit no mat-
ter what you write, as long as you write something.

i. How hard did you find this problem set?  How long did it take you to finish?  Does that 
seem unreasonably difficult or time-consuming for a five-unit course?

ii. Did you attend office hours?  If so, did you find them useful?

iii. Did you read through the textbook?  If so, did you find it useful?

iv. How is the pace of this course so far?  Too slow?  Too fast?  Just right?

v. Is there anything in particular we could do better?  Is there anything in particular that you 
think we're doing well?


